Ambrus
-7 °C
3 °C

Megvalósult a fény kvantumteleportációja

2001.10.05. 09:06
A California Institute of Technology kutatói olyan készüléket építettek, amely teleportációra képes - Kirk kapitányt, vagy a mandzsettagombját még nem sikerült odébbrakni vele, egy fénysugár kvantumállapotát azonban stabilan átküldi az asztal túloldalára. A dán Aarhus Egyetem kutatócsoportja ezermilliárd céziumatommal hajtott végre hasonló jelentőségű kísérletet.
Ne tessék Star Trek stílusú mutatványt vizualizálni, a dolog elég nehezen elképzelhető, és semmiképpen nem neveznénk látványosnak. Viszont a tudósok szerint új távlatokat nyit a kvantumfizikában: a Caltech-féle kísérletben egy fénysugár kvantumállapota elektromos jel formájában végighalad egy hagyományos kommunikációs csatornán, majd a túloldalon egy másik fénysugár segítségével ismét az eredeti fénysugárrá alakul, tehát teleportálódik. A dánok hasonló módszerrel tökéletes kvantummechanikai azonosságra bírtak rá két, egymástól szeparált céziumgázadagot.

Ha az "összefonódott" távoli kvantumrészecskék pénzérmék lennének, akkor az egyik "fejet", a másik "írást" mutatna
A Caltech kvantumoptikusai atomok teleportálásával egyelőre nem is kísérleteznek, mert a feltörhetetlen kriptográfiai eljárások és a jelenlegi számítógépeknél több nagyságrenddel erősebb kvantumszámítógépek kifejlesztéséhez bőven elég, ha a fotonokat rá tudják venni a különös mutatványra. A dániai Aarhus Egyetemen Eugene Polzik vezetésével működő kutatócsoport viszont több ezer milliárd céziumatomot hozott sikeresen "összefonódott" állapotba: a kvantummechanikai azonosságot egyelőre csak fél miliszekundumig tudják fenntartani a két gázfelhő között, korábban azonban ugyanezt legfeljebb négy atommal sikerült véghezvinni. Kimble, Polzik és kutatócsoportjaik a Science és a Nature, a két legrangosabb természettudományos szaklap hasábjain közölték eredményeiket.

Megkerülték a Heisenberg-féle határozatlansági elvet

Nem ez az első sikeres fényteleportáció, korábban azonban csak egyetlen foton kvantumállapotát sikerült ily módon reprodukálni. Kimble és kollégái olyan elméletet és módszert dolgoztak ki, amely egynél több fotonnal is működik, ráadásul ellenőrzi, hogy az jön-e ki a transzporterből, amit a túloldalon beletettek. A berendezés sikeresen megkerüli a Heisenberg-féle határozatlansági elvet, amelyből az is következik, hogy lehetetlen megmérni egy részecske kvantumállapotát, mert maga a mérés megváltoztathatja azt. Heisenberg tétele kizárja a teleportáció elméleti lehetőségét is, hiszen hogyan is tudnánk reprodukálni valamit, amit nem tudunk precízen megmérni?

A kutatók nem mértek meg semmit. Ehelyett különleges körümények között létrehoztak két "összefonódott" fénysugarat - ez azt jelenti, hogy a két fénynyaláb kvantumállapota egymást kiegészítő, akkor is, ha a fénysugarak egymástól távol vannak. Ha az egyik fénysugarat valamiféle hatás éri, a másik is reagál - "Ha az egyiket megcsiklandozom, a másik nevet" - magyarázta Kimble a műveletlen újságíróknak. Albert Einstein "kísérteties távoli hatásnak" nevezte a jelenséget, a kriptográfiában az enkóder-dekóder kulcspár hasonlít leginkább az "összefonódott" fénynyaláb-párosra.

Alice és Bob

Az "összefonódott" fénynyaláb előállítása után már gyerekjáték a fény teleportációja: a küldő fél - akit a kriptográfiában hagyományosan Alice-nek neveznek - interferáltatja az egyik "összefonódott" sugarat a teleportálandó fénysugárral. A kombinált fénysugár amplitúdóját diódák elektromos impulzussá alakítják, majd hagyományos kommunikációs csatorán átküldik a vevőkészülékhez (őt konzekvensen Bobnak nevezik). A vevőkészülék (Bob) helyreállítja a kombinált fénysugarat, amelyet az "összefonódott" sugár párjával interferáltatva előáll a teleportált fénysugár, az eredetinek tökéletesen megfelelő kvantumállapotban. Voila.

A kísérlet jelentősége abban rejlik, hogy ezzel a módszerrel elvileg olyan számítógépeket lehet majd építeni, amelyek sok nagyságrenddel gyorsabbak és nagyobb teljesítményűek lesznek, mint a mai technológiákkal készültek. Kimble szerint nincs értelme gyors gyakorlati eredményt várni, de az emberiség száz éven belül a szolgálatába állíthatja a kvantummechanika különös törvényszerűségeit.

Kvantummechanika
A közös néven kvantummechanikának nevezett elméletnek fontos sajátsága, hogy atomokra alkalmazva megadja azoknak lehetséges fizikai állapotait. Ezekhez diszkrét energiaértékek tartoznak, amelyeket sajátenergiáknak, a megfelelő állapotokat sajátállapotoknak nevezzük. Az atomnak valamilyen tetszőleges állapota ilyen sajátállapotok szuperpozíciója. Méréssel mindig valamelyik sajátérték határozható meg. Hogy az adott időpillanatban éppen melyik, arra csak valószínűségi kijelentés tehető. Tehát csak az adható meg az elmélet alapján, hogy a mérés milyen valószínűséggel adja ezt vagy azt a sajátértéket.

Az atom vagy más mikrofizikai rendszer állapotának jellemzésére egy komplex függvény, az állapotfüggvény szolgál. Az állapotfüggvény a lehetséges sajátállapotok szuperpozícióját adja meg. A mérések eredményére valószínűségeket ad, amelyek alapján a várható értékek vagy középértékek kiszámíthatók. Az elmélet valószínűségi jellege ebben nyilvánul meg. Ha például azt a kérdést tesszük fel, hogy az állapotfüggvényt ismerve, adott időpontban hol van a hidrogénatom elektronja, akkor erre a kvantummechanika alapján csak azt a választ adhatjuk, hogy az állapotfüggvény abszolút értékének a négyzetét megszorozva valamely hely elemi kis környezetének térfogatával kapjuk meg annak a valószínűségét, hogy az elektron az adott időpontban ebben a kis tartományban tartózkodik.

A klasszikus fizikához képest teljesen új vonása az elméletnek, hogy bizonyos, egymással összetartozó fizikai mennyiségek értékpárjai egy időpontra nem határozhatók meg tetszőleges pontossággal. Ilyen párok például az elektron helyének valamelyik koordinátája és a megfelelő impulzuskomponens. Ebből következik, hogy ha az egyik mennyiséget nagyon pontosan meghatározzuk (pl. igen pontosan megmérjük), a másik szinte teljesen határozatlan lesz. Ezért a kvantummechanikában értelmetlen dolog az elektron pályájáról beszélni az atomban, mert azt a helynek és a sebességnek az egyidejű értékei szabják meg. Ezek pedig egyszerre nem adhatók meg teljes pontossággal. A mérési pontosságnak nem a mérőberendezés szab határt, hanem annak az elmélet szerint elvi korlátja van. A kvantumfizikának ezt az új, a klasszikustól idegen sajátságát Heisenberg ismerte fel 1927-ben, ezért a megfelelő mennyiségi összefüggést Heisenberg-féle határozatlansági relációnak nevezzük.