Vendel
7 °C
19 °C

Néha úgy érzed, mintha két valóság létezne?

Több infó

Támogasd a független újságírást, támogasd az Indexet!

Nincs másik olyan, nagy elérésű online közéleti médiatermék, mint az Index, amely független, kiegyensúlyozott hírszolgáltatásra és a valóság minél sokoldalúbb bemutatására törekszik. Ha azt szeretnéd, hogy még sokáig veled legyünk, akkor támogass minket!

Milyen rendszerességgel szeretnél támogatni minket?

Mekkora összeget tudsz erre szánni?

Mekkora összeget tudsz erre szánni?

Mágneses tér a csillagbölcsőkben

2009.11.20. 17:05 Módosítva: 2009-11-20 17:05:43
Az új megfigyelések alapján a mágneses tér jelenléte igen fontos szerepet játszik a csillagok keletkezésekor.

A csillagkeletkezés erősen leegyszerűsített modellje szerint egy hatalmas kiterjedésű gáz- és porfelhő a gravitációs erők hatására összehúzódásba kezd. Ennek következtében központi tartománya egyre sűrűbbé és forróbbá válik, míg végül a középpontban a körülmények megfelelővé válnak a nukleáris fúziók beindulásához - vagyis megszületik a csillag.

Fantáziakép a TVLM513-46546 jelű objektumról és erős gravitációs teréről (Forrás: Dana Berry, Gemini Observatory, SkyWorks Digital Animation)
Fantáziakép a TVLM513-46546 jelű objektumról és erős gravitációs teréről (Forrás: Dana Berry, Gemini Observatory, SkyWorks Digital Animation)

A valóságban a hatalmas kiterjedésű felhőnek csak egy kis hányada alkotja a majdani csillagot. Mivel pedig a tömegvonzás igyekszik a felhő teljes anyagát a középpontba vonzani, valamiféle másik erőhatásnak kell megakadályoznia ebben.

Ebben két lehetséges hatás játszhat közre, írta meg a Hírek.csillagászat.hu.

Az egyik elképzelés szerint mivel a mágneses térben áramló anyag számára a mozgás csak az tér által kijelölt erővonalak mentén lehetséges, így a mágneses tér megakadályozza az anyag minden irányból történő beesését.

A másik hatás az anyag turbulenciája lehet: ezek az felhő anyagának felkavarásával tulajdonképpen kifelé irányuló nyomást keltenek, ami szintén a gravitációs erő ellen dolgozik.

E két hatás erősségét illetően már régóta folynak a viták. Most azonban Hua-bai Li (Harvard-Smithsonian Center for Astrophysics) és kutatócsoportja az első megfigyelési eredményeket szolgáltatták a kérdés megoldásához.

Az Astrophysical Journalban közlésre elfogadott cikkük szerint a kutatók összesen 25 csillagközi felhőben figyelték meg az objektum központi, fényes sűrűsödését. Ezek a születésben levő csillagok magját tartalmazó felhők közül egyesek akár 6500 fényévnyire is voltak a Földtől.

A megfigyelések során a kibocsátott fény polarizáltságát vizsgálták meg. A polarizáltság mértékéből a mágneses mező erősségére következtethettek, a polarizáltság iránya pedig a mező irányával áll összefüggésben. A mérések során a magvidékben tapasztalható mágneses mező jellemzőit hasonlították össze a környező, igen ritka felhőkben megfigyelhető mágneses tér jellemzőivel.

Az eredmények szerint a mágneses mezők általában hasonló irányokba álltak be, dacára a megfigyelt objektumok igen eltérő méreteinek (1 fényéves méretű mag-tartományok az 1000 fényév méretű ködösségekben) és sűrűségüknek, melyek akár több nagyságrenddel eltértek. Mivel a feltételezett turbulenciák az anyag összekavarása mellett a helyi mágneses terek irányait is összekuszálnák, a megfigyelt térjellemzők arra utalnak, hogy a mágnesesség sokkal erősebb hatás, mint a molekulafelhők belső turbulenciái.

Tekintettel arra, hogy a megfigyelési eredmények szerint a molekuláris felhők és azok belső sűrűbb tartományai nem csak gravitációs, hanem mágneses szempontból is egy objektumot alkotnak, a csillagkeletkezési modellekben is számolni kell az erős mágneses terek jelenlétével és hatásaival. Ezek tanulmányozása révén fontos lépést tehetünk a csillagkeletkezési folyamatok pontosabb megértéséhez, illetve annak tisztázásához, hogyan fejlődhetett az ősi Univerzum a ma megfigyelhető világunkká.