Gyöngyi
5 °C
14 °C

Néha úgy érzed, mintha két valóság létezne?

Több infó

Támogasd a független újságírást, támogasd az Indexet!

Nincs másik olyan, nagy elérésű online közéleti médiatermék, mint az Index, amely független, kiegyensúlyozott hírszolgáltatásra és a valóság minél sokoldalúbb bemutatására törekszik. Ha azt szeretnéd, hogy még sokáig veled legyünk, akkor támogass minket!

Milyen rendszerességgel szeretnél támogatni minket?

Mekkora összeget tudsz erre szánni?

Mekkora összeget tudsz erre szánni?

Tízcentis szénlégkör egy fiatal neutroncsillagon

2009.11.06. 16:55
A Chandra műhold mérései alapján a Cassiopeia A jelű szupernóva-maradványban található neutroncsillagot egy nagyon vékony, mindössze 10 centiméter vastagságú, szénből álló légkör övezi.

A Cassiopeia A a becslések szerint 1670 környékén jött létre egy szupernóva-robbanás eredményeként. Centrumában a kataklizmában elpusztult szülőcsillag maradványa, egy neutroncsillag található. Korábban nem katalogizált pontszerű röntgenforrásként éppen a Chandra röntgenműhold azonosította 1999-ben a szupernóva-maradványról készült első felvételével. Meglepetésre azonban sugárzása sem a röntgen-, sem a rádiótartományban nem mutatott pulzációt, a kutatók egyáltalában nem tapasztaltak a pulzárokra jellemző semmiféle aktivitást, így az objektum valódi természete tíz éven keresztül kérdéses volt. Ez a probléma az új eredmények alapján azonban most megoldódni látszik.

Az objektum Chandra műhold által felvett röntgenspektrumát elméleti modellekkel összehasonlítva Wynn Ho (University of Southampton) és Craig Heinke (University of Alberta) azt találta, hogy a Cassiopeia A neutroncsillagának ultravékony, szénből álló légköre van. A modelleket szénatmoszférára alkalmazva megállapították, hogy a röntgensugárzásért felelős emissziós terület egyenletesen veszi körül a neutroncsillagot, ezért a röntgentartományban nem várható semmiféle, a neutroncsillag gyors tengelykörüli forgása által modulált intenzitásváltozás. A korábban használt, hidrogénből álló légkörrel dolgozó modellek egy kisebb forró, röntgensugárzó foltot jósolnak a neutroncsillagon, melynek segítségével magyarázható a forgás miatt a röntgenintenzitásban detektálható jelpulzálás. Ha a Cassiopeia A esetében megfigyelhető pulzáció nélküli állapotot is hidrogénlégkörrel szeretnék magyarázni, akkor ahhoz a neutroncsillagnál is kisebb méretű, ráadásul egzotikus anyagból álló objektumot (kvarkcsillagot) kellene feltételezni.

A neutroncsillagok a legtöbb csillagászati objektummal ellentétben emberi léptékű mérettel rendelkeznek, átmérőjük 20-30 kilométer körüli. A légkörük vastagsága természetesen még ennél is jóval kisebb, a Cassiopeia A neutroncsillagának szénatmoszférája a számítások szerint mindössze 10 centiméteres. Összehasonlításként: Földünk atmoszférájának vastagsága bolygónk átmérőjének körülbelül 1 százaléka. A vizsgált neutroncsillag esetében ez az arány 0,001 százaléknál is kisebb. A rendkívül vékony légkör oka, hogy a neutroncsillag felszíni gravitációja százmilliárdszorosan haladja meg a földfelszíni gravitációt, mivel a neutroncsillag városnyinál alig nagyobb méretébe csillagnyi tömeg zsúfolódik össze. A szén egyébként a robbanás eredményeként kirepült, majd később a neutroncsillag forró felszínére visszahulló anyagban található hidrogén és hélium termonukleáris reakciójának eredményeként jön létre.

A Cassiopeia A neutroncsillagának kora körülbelül egy nagyságrenddel kisebb, mint más, megszokott pulzárként viselkedő neutroncsillagoké, ezért egyedülálló lehetőséget nyújt a hűlő neutroncsillagok korai életszakaszának tanulmányozására. A röntgenspektrum és a pulzáraktivitás hiánya azt jelzik, hogy esetünkben a neutroncsillag felszíni mágneses tere viszonylag gyenge. Hasonlóan gyenge mágneses térrel rendelkezhetnek más, szintén nagyon csekély röntgentartománybeli pulzációt mutató fiatal neutroncsillagok is. Nem világos még, hogy vajon ezeknek egész életük során gyenge terük marad-e, így soha nem válhatnak rádiópulzárrá, vagy - ahogyan idősebbek lesznek - valamilyen belső folyamat eredményeként esetleg mégis fel fog erősödni a mágneses terük. Az eredményeket részletező szakcikk a Nature magazin 2009. november 5-i számában jelent meg.